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Mixed-Integer PDE-Constrained Optimization (MIPDECO)
PDE-constrained MIP ... u = u(t, x , y , z) ⇒ infinite-dimensional!

t is time index; x , y , z are spatial dimensions
minimize

u,w
F(u,w)

subject to C(u,w) = 0
u ∈ U , and w ∈ Zp (integers),

u(t, x , y , z): PDE states, controls, & design parameters

w discrete or integral variables

MIPDECO Warning

w = w(t, x , y , z) ∈ Z may be
infinite-dimensional integers!

It’s a MIP, Jim,
but not as we know it!
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1st Example Mixed-Integer PDE-Constrained Optimization

Find number and location of sources to match observation ū

minimize
u,w

J =
1

2

∫
Ω

(u(w)− ū)2dΩ least-squares fit

subject to −∆u =
∑
k,l

wkl fkl in Ω Poisson equation∑
k,l

wkl ≤ S and wkl ∈ {0, 1} source budget

with Dirichlet boundary conditions u = 0 on ∂Ω.

Example with Gaussian source term, σ > 0,

fkl(x , y) := exp

(
−‖(xk , yl)− (x , y)‖2

σ2

)
,

Motivated by porous-media flow application to determine number
of boreholes, [Ozdogan, 2004, Fipki and Celi, 2008]
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1st Example Mixed-Integer PDE-Constrained Optimization

Consider 2D example with Ω = [0, 1]2 and discretize PDE:

5-point finite-difference stencil; uniform mesh h = 1/N

Denote ui ,j ≈ u(ih, jh) approximation at grid points



minimize
u,w

Jh =
h2

2

N∑
i ,j=0

(ui ,j − ūi ,j)
2

subject to
4ui ,j − ui ,j−1 − ui ,j+1 − ui−1,j − ui+1,j

h2
=

N∑
k,l=1

wkl fkl(ih, jh)

u0,j = uN,j = ui ,0 = ui ,N = 0
N∑

k,l=1

wkl ≤ S and wkl ∈ {0, 1}

⇒ finite-dimensional (convex) MIQP
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1st Example Mixed-Integer PDE-Constrained Optimization

Potential source locations (blue dots) on 16× 16 mesh
Create target ū using red square sources
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1st Example Mixed-Integer PDE-Constrained Optimization
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Grand-Challenge Applications of MIPDECO

Topology optimization [Sigmund and Maute, 2013]

Nuclear plant design: select core types &
control flow rates [Committee, 2010]

Well-selection for remediation of
contaminated sites [Ozdogan, 2004]

Design of next-generation solar cells
[Reinke et al., 2011]

Design of wind-farms [Zhang et al., 2013]

Scheduling for disaster recovery:
oil-spills [You and Leyffer, 2010]

& wildfires [Donovan and Rideout, 2003]

Design, control & operation of gas
networks, see ISMP-TD15,
[De Wolf and Smeers, 2000, Martin et al., 2006]

Design of accelerators ... many more
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Design of Ultra-Efficient Solar Cell

Design of non-reciprocal optical metamaterial for solar cells

Choose orientation of atoms and molecules to maximize energy
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Design of Ultra-Efficient Solar Cell
Design of non-reciprocal optical metamaterial for solar cells

∇×H = −iω(χH + εE) + Je ,

∇× E = iω(µH + ζE) + Jm,

Maxwell’s equation gives E and H electric and magnetic field

Objective is to maximize power inside solar cell (x space dims)

1

2

∫
ω

Isolar(ω)

∫
V

=(ε(x ,w))|E(x ,w ;ω)|2+=(µ(x ,w))|H(x ,w ;ω)|2 dV dω

wi ,j ,k = 1 if orientation i chosen on face j of molecule k

wi ,j ,k impact permittivities and permeabilities in Maxwell’s

ε̃j ,k =
∑
i∈O

wi ,j ,kεi
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Mesh-Independent & Mesh-Dependent Integers

Definition (Mesh-Independent & Mesh-Dependent Integers)

1 The integer variables are mesh-independent, iff number of
integer variables is independent of the mesh.

2 The integer variables are mesh-dependent, iff the number of
integer variables depends on the mesh.

Mesh-Independent

Manageable tree size

Theory possible

Mesh-Dependent

Exploding tree size

Theory???
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Theoretical Challenges of MIPDECO

Functional Analysis (mesh-dependent integers)

Denis Ridzal: What function space is w(x , y) ∈ {0, 1}?

Consistently approximate w(x , y) ∈ {0, 1} as h→ 0?

Conjecture: {w(x , y) ∈ {0, 1}} 6= L2(Ω)
... e.g. binary support of Cantor set not integrable

Likely need additional regularity assumptions

Coupling between Discretization & Integers

Discretization scheme (e.g. upwinding for wave equation) depends
on direction of flow (integers).

Application: gas network models with flow reversals

13 / 29



Computational Challenges of MIPDECO

Approaches for huge branch-and-bound trees
... e.g. 3D topology optimization with 109 binary variables

Warm-starts for PDE-constrained optimization (nodes)

Guarantees for nonconvex (nonlinear) PDE constraints
... factorable programming approach hopeless

log

^

31

2

2x x

x

*

+

... f (x1, x2) = x1 log(x2) + x3
2
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MIPDECO: Two Cultures Collide

Observation

PDE-optimization & MIP developed separately
⇒ different assumptions, methodologies, and

computational kernels!

PDE-Optimization Mixed-Integer Programming

Obtain good solutions efficiently Deliver certificate of optimality

Nonlinear optimization:
Newton’s method

Combinatorial optimization:
branch-and-cut

Iterative Krylov solvers Factors & rank-one updates

Run on bleeding-edge HPC Limited HPC developments

Potential for Disaster, or Opportunity for Innovation!
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Problem 1: Source Inversion

Find number and location of sources to match observation ū

minimize
u,w

J =
1

2

∫
Ω

(u(w)− ū)2dΩ least-squares fit

subject to −∆u =
∑
k,l

wkl fkl in Ω Poisson equation∑
k,l

wkl ≤ S and wkl ∈ {0, 1} source budget

MIP with convex quadratic objective

Test NLP-plus-rounding heuristic versus MINLP

Effect of mesh-dependent vs. mesh-independent integers

Mesh-independent: pick sources from 36 potential locations
Mesh-dependent: all nodes are potential locations
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1st Example Mixed-Integer PDE-Constrained Optimization

Potential source locations (blue dots) on 16× 16 mesh
Create target ū using red square sources
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Approach 1: NLP-Solve, Knapsack Rounding, and MIP

Knapsack Rounding

1 Solve continuous relaxation using NLP solver

2 Solve MILP to find nearest integer & enforce
∑

wi ≤ S
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MINLP solution better: NLP-err = 0.0388 > 0.0307 = MIP-err
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Mesh-Independent Source Inversion: MINLP Solvers

Number of Nodes and CPU time for Increasing Mesh Sizes

Mesh-Size
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Number of Nodes independent of mesh size!
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Mesh-Dependent Source Inversion: MINLP Solvers

Number of Nodes and CPU time for Increasing Mesh Sizes
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Number of nodes explodes with mesh size!
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MIPDECO Trick # 1: Eliminating the PDE

Discretized PDE constraint (Poisson equation)

4ui ,j − ui ,j−1 − ui ,j+1 − ui−1,j − ui+1,j

h2
=
∑
k,l

wkl fkl(ih, jh), ∀i , j

⇔ Au =
∑

wkl fkl , where wkl ∈ {0, 1} only appear on RHS!

Elimination of PDE and states u(x , y , z)

Au =
∑
k,l

wkl fkl ⇔ u = A−1

∑
k,l

wkl fkl

 =
∑
k,l

wklA
−1fkl

Solve n2 � 2n PDEs: u(kl) := A−1fkl

Substitute u =
∑

k,l wklu
(kl)

Simplified model is quadratic knapsack problem

22 / 29



Mesh-Independent Source Inversion (2)

CPU Time for Increasing Mesh Sizes: Simplified vs. Original Model

Mesh-Size
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Eliminating PDEs is two orders of magnitude faster!
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Problem 1: Source Inversion

Numerical Results

Solve mesh-independent problems with coarse discretization

Mesh-dependent instances cannot be solved

Outer Approximation (Bon-OA) inefficient for these instances

Trick # 1: elimination of states and PDE constraint

Nonlinear solvers run into storage issues

... not surprising: MIPs grow like tribbles!
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Problem 2: Well Placement & Operation [Bangerth et al., 2006]

Place injection/extraction wells in reservoir to maximize production

Two-phase flow model with
conservation of mass and
Darcy’s law to model fluxes

Replace 4th order PDE
system by heat equation

ut − K∆u =
∑

qs (1)

tensor K models porosity

Porosity Data from spe.org

Maximize net-present value of “production” over [0,T ]

max
q,u

∫ T

t=0
(1− d)t/T

∑
s∈wells

csqs(t)dt whered > 0 discount fact.

Subject to flow model (1) and bounds on wells and flow rates:

0 ≤ qs(t) ≤ Rws , ws ∈ {0, 1},
∑
s

ws ≤ U
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Problem 2: Well Placement & Operation

Discretization of u(x , t) in spatial dimensions x and time t

1D instance: Crank-Nicolson (implicit finite-difference)

2D instance: 5-point stencil in space, backward Euler in time

Uniform mesh of size M ×M in space

Uniform step-size in time with N steps

Discretized problem is MILP, i.e. linear

Number of variables: O(M2N) = 4096 for M = N = 16, small

Could again eliminate PDE and states u by
1 Solving Au(s) = es for unit vectors es for all wells
2 Eliminating u =

∑
qsu(s) from MILP

Mesh-independent instances: finite set of possible locations

Mesh-dependent instances: build wells anywhere

... see also Falk Hante, TD15: Heat Eqn with Actuator Placement
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Well Placement & Operation in Two Dimension

Soln of NLP Relaxation
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Conclusions

Mixed-Integer PDE-Constrained Optimization (MIPDECO)

Class of challenging problems with important applications

Subsurface flow: oil recovery or environmental remediation
Design of next-generation solar cells

On-going work: Building library of test problems

Classification: mesh-dependent vs. mesh-independent

Elimination of PDE and state variables u(t, x , y , z)

Discretized PDEs ⇒ huge MINLPs ... push solvers to limit

Need new ideas, solvers, software for real applications

Outlook and Extensions

Consider multi-level in space (network) and time

Move toward truly multi-level approach similar to PDEs

... our five-year mission ...
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To boldly go where no optimizer has gone before ...

... to explore strange new PDEs & MIPs!
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